
1

2

Table of Contents

Executive Summary 4

Project Context 4

Audit scope 7

Security Rating 8

Intended Smart Contract Behaviours 9

Code Quality 10

Audit Resources 10

Dependencies 10

Severity Definitions 11

Audit Findings 12

Centralisation 41

Conclusion 42

Our Methodology 43

Disclaimers 45

About Hashlock 46

Hashlock Pty Ltd

3

CAUTION

THIS DOCUMENT IS A SECURITY AUDIT REPORT AND MAY CONTAIN

CONFIDENTIAL INFORMATION. THIS INCLUDES IDENTIFIED

VULNERABILITIES AND MALICIOUS CODE THAT COULD BE USED TO

COMPROMISE THE PROJECT. THIS DOCUMENT SHOULD ONLY BE FOR

INTERNAL USE UNTIL ISSUES ARE RESOLVED. ONCE VULNERABILITIES ARE

REMEDIATED, THIS REPORT CAN BE MADE PUBLIC. THE CONTENT OF THIS

REPORT IS OWNED BY HASHLOCK PTY LTD FOR THE USE OF THE CLIENT.

Hashlock Pty Ltd

4

Executive Summary

The ParagonsDAO team partnered with Hashlock to conduct a security audit of their

StakedPDT.sol, IForkedPDTStakingV2.sol, IStakedPDT.sol smart contracts. Hashlock

manually and proactively reviewed the code to ensure the project’s team and

community that the deployed contracts were secure.

Project Context

ParagonsDAO is a web3 gaming community focused on enabling players and guilds to

compete and maximize their rewards through financial tools, shareable assets,

edutainment, and competitive opportunities. Paragons is reducing the financial barriers

of web3 gaming, to create an ecosystem where everyone wins—players, protocols, and

guilds alike.

Project Name: ParagonsDAO

Compiler Version: ^0.8.24

Website: www.paragonsdao.com

Logo:

Hashlock Pty Ltd

http://www.paragonsdao.com

5

Visualised Context:

Project Name Launch Date

ParagonsDAO TBA

Compiler Version Language

v^0.8.24 Solidity

Network Token Ticker

BASE PDT

Hashlock Pty Ltd

6

Project Visuals:

Hashlock Pty Ltd

7

Audit scope

We at Hashlock audited the solidity code within the ParagonsDAO project, the scope of

work included a comprehensive review of the smart contracts listed below. We tested

the smart contracts to check for their security and efficiency. These tests were

undertaken primarily through manual line-by-line analysis and were supported by

software-assisted testing.

Description ParagonsDAO Protocol Smart Contracts

Platform Base / Solidity

Audit Date July, 2024

Contract 1 StakedPDT.sol

Contract 1 MD5 Hash 608346ede58b91b5b8d48fdcf51a1bb9

Contract 2 IForkedPDTStakingV2.sol

Contract 2 MD5 Hash a8426736e3d1a9a7251a5f3ac0037544

Contract 3 IStakedPDT.sol

Contract 3 MD5 Hash a7aed75577f8432302ec7ea3582934e3

GitHub Commit Hash 5b60196206fc20ff7963a3f1a2466e18f60deac2

Hashlock Pty Ltd

8

Security Rating

After Hashlock’s Audit, we found the smart contracts to be “Hashlocked”. The
contracts all follow simple logic, with correct and detailed ordering. They use a series of
interfaces, and the protocol uses a list of Open Zeppelin contracts.

The ‘Hashlocked’ rating is reserved for projects that ensure ongoing security via bug bounty programs or
on-chain monitoring technology.

All issues uncovered during automated and manual analysis were meticulously reviewed

and applicable vulnerabilities are presented in the Audit Findings section.

We initially identified some significant vulnerabilities that have since been addressed.

Hashlock found:

1 High-severity vulnerabilities

3 Medium-severity vulnerabilities

4 Low-severity vulnerabilities

5 Gas Optimisations

Caution: Hashlock’s audits do not guarantee a project's success or ethics, and are not

liable or responsible for security. Always conduct independent research about any

project before interacting.

Hashlock Pty Ltd

9

Intended Smart Contract Behaviours

Claimed Behaviour Actual Behaviour

StakedPDT.sol

- Allows users to:

- Stake PDT tokens and mint StakedPDT

tokens in return

- Unstake PDT tokens and burn their

StakedPDT tokens

- Earn rewards based on how long they

have staked for

- Transfer StakedPDT tokens to whitelisted

addresses

- Allows privileged roles to:

- Update epoch length

- Update which epochs will be excluded

from rewards

- Register new reward tokens

- Move onto the next epoch

- Withdraw reward tokens in the contract

- Whitelist addresses to receive StakedPDT

tokens

Contract achieves this

functionality.

IForkedPDTStakingV2.sol

- Interface

Contract achieves this

functionality.

IStakedPDT.sol

- Interface

Contract achieves this

functionality.

Hashlock Pty Ltd

10

Code Quality

This Audit scope involves the smart contracts of the ParagonsDAO project, as outlined

in the Audit Scope section. All contracts, libraries, and interfaces mostly follow standard

best practices to help avoid unnecessary complexity that increases the likelihood of

exploitation, however, some refactoring was required.

The code is very well commented on and closely follows best practice nat-spec styling.

All comments are correctly aligned with code functionality.

Audit Resources

We were given the ParagonsDAO project's smart contract code in the form of GitHub

access.

As mentioned above, code parts are well-commented. The logic is straightforward, and

therefore it is easy to quickly comprehend the programming flow as well as the complex

code logic. The comments help understand the overall architecture of the protocol.

Dependencies

Per our observation, the libraries used in this smart contracts infrastructure are based

on well-known industry-standard open-source projects.

Apart from libraries, its functions are used in external smart contract calls.

Hashlock Pty Ltd

11

Severity Definitions

Significance Description

High

High-severity vulnerabilities can result in loss of funds,
asset loss, access denial, and other critical issues that
will result in the direct loss of funds and control by the
owners and community.

Medium
Medium-level difficulties should be solved before
deployment, but won't result in loss of funds.

Low
Low-level vulnerabilities are areas that lack best
practices that may cause small complications in the
future.

Gas Gas Optimisations, issues, and inefficiencies

Hashlock Pty Ltd

12

Audit Findings

High

[H-01] StakedPDT::transfer, transferFrom - Transferring StakedPDT tokens

breaks reward calculations due to not calculating weight properly

Description

The transfer and transferFrom functions allow users to transfer their StakedPDT tokens

to whitelisted addresses. However, transfering staked tokens can break the reward and

weight calculation.

Vulnerability Details

The transfer and transferFrom functions allow a user to send their StakedPDT token to

another address, however these functions do not calculate the user weight.

function transfer(address to, uint256 value) public override returns (bool) {

if (!whitelistedContracts[to]) revert InvalidStakesTransfer();

super._transfer(msg.sender, to, value);

return true;

}

function transferFrom(address from, address to, uint256 value) public override
returns (bool) {

if (!whitelistedContracts[to]) revert InvalidStakesTransfer();

super._spendAllowance(from, msg.sender, value);

super._transfer(msg.sender, to, value);

return true;

}

Hashlock Pty Ltd

13

Consider a scenario where a user has staked at the end of an epoch, their weight is

adjusted for the fact that they have staked late and their rewards will be calculated with

their weight compared to the contract weight.

function stake(address to, uint256 amount) external nonReentrant {

//rest of the function

StakeDetails memory _stake = stakeDetails[to];

uint256 _amountStaked = balanceOf(to);

if (_stake.lastInteraction > _epoch.startTime) {

uint256 _additionalWeight = _weightIncreaseSinceInteraction(

block.timestamp,

_stake.lastInteraction,

_amountStaked

);

_stake.weightAtLastInteraction += _additionalWeight;

} else {

_stake.weightAtLastInteraction = _weightIncreaseSinceInteraction(

block.timestamp,

_epoch.startTime,

_amountStaked

);

}

//rest of the function

}

Hashlock Pty Ltd

14

However, when tokens are transferred, the transfer function does not consider what the

user weight was. When a user receives tokens, their weight will not be calculated

correctly while the contract weight is calculated correctly. This will result in combined

user weights being more than the contract weight which means that users that claim

first will benefit from more rewards while there won’t be enough rewards left for users

that claim later.

Proof of Concept

Implement and run the following test in the StakedPDT_claim.t.sol file.

function test_transferTokenAndClaim() public {

uint256 POOL_SIZE = 1e18;

uint256 initialBalance = 1e18;

bPDTOFT.mint(staker1, initialBalance * 2);

bPDTOFT.mint(staker2, initialBalance * 2);

bPDTOFT.mint(staker3, initialBalance * 2);

bPDTOFT.mint(staker4, initialBalance * 2);

//update staker2 as whitelisted

vm.startPrank(tokenManager);

bStakedPDT.updateWhitelistedContract(staker2, true);

vm.stopPrank();

//advance to epoch1

_creditPRIMERewardPool(POOL_SIZE);

_moveToNextEpoch(0);

//advance to epoch2

_creditPRIMERewardPool(POOL_SIZE);

_moveToNextEpoch(1);

//staker3 and staker4 stake at epoch2 start

(uint256 epochStartTime, uint256 epochEndTime,) = bStakedPDT.epoch(2);

vm.warp(epochStartTime);

Hashlock Pty Ltd

15

vm.startPrank(staker3);

bPDTOFT.approve(bStakedPDTAddress, initialBalance * 2);

bStakedPDT.stake(staker3, initialBalance);

vm.stopPrank();

vm.startPrank(staker4);

bPDTOFT.approve(bStakedPDTAddress, initialBalance * 2);

bStakedPDT.stake(staker4, initialBalance);

vm.stopPrank();

//staker1 stakes right before epoch end

vm.warp(epochEndTime - 1 days);

vm.startPrank(staker1);

bPDTOFT.approve(bStakedPDTAddress, initialBalance * 2);

bStakedPDT.stake(staker1, initialBalance);

vm.stopPrank();

//staker1 transfers StakedPDT to staker2

vm.startPrank(staker1);

bStakedPDT.transfer(staker2, initialBalance);

vm.stopPrank();

console.log("Contract weight:", bStakedPDT.contractWeight());

console.log("Staker1 weight:", bStakedPDT.userTotalWeight(staker1));

console.log("Staker2 weight:", bStakedPDT.userTotalWeight(staker2));

console.log("Staker3 weight:", bStakedPDT.userTotalWeight(staker3));

console.log("Staker4 weight:", bStakedPDT.userTotalWeight(staker4));

//advance to epoch3

_creditPRIMERewardPool(POOL_SIZE);

_moveToNextEpoch(2);

//all stakers claim

vm.startPrank(staker1);

Hashlock Pty Ltd

16

bStakedPDT.claim(staker1);

vm.stopPrank();

vm.startPrank(staker2);

bStakedPDT.claim(staker2);

vm.stopPrank();

vm.startPrank(staker3);

bStakedPDT.claim(staker3);

vm.stopPrank();

vm.startPrank(staker4);

bStakedPDT.claim(staker4);

vm.stopPrank();

//logs

console.log("Staker1 PRIME Reward Tokens:", bPRIME.balanceOf(staker1));

console.log("Staker2 PRIME Reward Tokens:", bPRIME.balanceOf(staker2));

console.log("Staker3 PRIME Reward Tokens:", bPRIME.balanceOf(staker3));

console.log("Staker4 PRIME Reward Tokens:", bPRIME.balanceOf(staker4));

}

Observing the logs shown below will show that the combined user weight is greater

than the contract weight and that staker4 does not receive the rewards that they are

entitled to.

Contract weight: 54000000000000000000

Staker1 weight: 0

Staker2 weight: 27000000000000000000

Staker3 weight: 27000000000000000000

Staker4 weight: 27000000000000000000

Staker1 PRIME Reward Tokens: 0

Staker2 PRIME Reward Tokens: 491228070175438596

Staker3 PRIME Reward Tokens: 491228070175438596

Hashlock Pty Ltd

17

Staker4 PRIME Reward Tokens: 17543859649122808

Impact

Reward and weight calculation breaks, users will miss out on rewards they should get

while other users will earn rewards that they shouldn’t.

Recommendation

Calculate the user weight on token transfers. When a user receives tokens, their weight

should be adjusted according to the weight of the token sender.

Alternatively, remove the transfer functionalities.

Status

Resolved

Medium

[M-01] StakedPDT::updateEpochLength - Function lacks proper checks for the

new epoch length this can cause a temporary DoS of contract functionality.

Description

The updateEpochLength function allows the privileged EPOCH_MANAGER role to

change the length of epochs. Lack of checks in this function can lead to temporary DoS,

making it impossible to move to the next epoch until the length is updated again.

Vulnerability Details

The updateEpochLength function shown below updated the length of epochs.

function updateEpochLength(uint256 newEpochLength) external onlyRole(EPOCH_MANAGER)
{

require(newEpochLength > 0, "Invalid new epoch length");

uint256 previousEpochLength = epochLength;

epochLength = newEpochLength;

Hashlock Pty Ltd

18

epoch[currentEpochId].endTime = epoch[currentEpochId].startTime +
newEpochLength;

emit UpdateEpochLength(currentEpochId, previousEpochLength, newEpochLength);

}

As seen in this function, there are no checks done to make sure that the new epoch end

time is greater than contractLastInteracted.

If the new epoch.endTime is less than the contractLastInteracted, when the distribute

function is called, this function will make a call to the contractWeight function which

will call the _weightIncreaseSinceInteraction function to calculate contract weight.

function distribute() external onlyRole(EPOCH_MANAGER) {

uint256 _currentEpochId = currentEpochId;

Epoch memory _currentEpoch = epoch[_currentEpochId];

if (block.timestamp >= _currentEpoch.endTime) {

epoch[_currentEpochId].weightAtEnd = contractWeight();

//rest of the function

}

function contractWeight() public view returns (uint256 contractWeight_) {

Epoch memory _epoch = epoch[currentEpochId];

uint256 _weightIncrease = _weightIncreaseSinceInteraction(

Math.min(block.timestamp, _epoch.endTime),

Math.max(contractLastInteraction, _epoch.startTime),

totalSupply()

);

contractWeight_ = _weightIncrease + _contractWeight;

}

function _weightIncreaseSinceInteraction(

uint256 timestamp,

uint256 lastInteraction,

uint256 baseAmount

) internal pure returns (uint256 additionalWeight_) {

uint256 _timePassed = timestamp - lastInteraction;

Hashlock Pty Ltd

19

uint256 _multiplierReceived = (1e18 * _timePassed) / 1 days;

additionalWeight_ = (baseAmount * _multiplierReceived) / 1e18;

}

However, since the timestamp parameter in this function is less than the lastInteraction,

this call will revert due to underflow.

Proof of Concept

Implement and run the following test in the StakedPDT_claim.t.sol file.

function test_cannotMoveToNextEpoch() public {

uint256 POOL_SIZE = 1e18;

uint256 initialBalance = 1e18;

bPDTOFT.mint(staker1, initialBalance * 2);

/// EPOCH 0

_creditPRIMERewardPool(POOL_SIZE);

_moveToNextEpoch(0);

// stake in epoch 1

(uint256 epochStartTime, uint256 epochEndTime,) = bStakedPDT.epoch(1);

vm.warp(epochStartTime);

// advance time

vm.warp(epochStartTime + 2 weeks);

//user stakes

vm.startPrank(staker1);

bPDTOFT.approve(bStakedPDTAddress, initialBalance);

bStakedPDT.stake(staker1, initialBalance);

vm.stopPrank();

//update epoch lenght

vm.startPrank(epochManager);

bStakedPDT.updateEpochLength(1 weeks);

vm.stopPrank();

//move to next epoch

_creditPRIMERewardPool(POOL_SIZE);

_moveToNextEpoch(1);

Hashlock Pty Ltd

20

}

This test will fail due to an underflow error when the distribute function is called.

Impact

It will be impossible to move on to the next epoch until epoch length is updated again,

causing a DoS of the contract.

Recommendation

Implement a check in the updateEpochLength function to make sure that the new

epoch.endTime is greater than the contractLastInteraction.

Status

Resolved

[M-02] StakedPDT::unstake - Users that unstake at the epoch end time will

lose out on rewards even if they have staked for the whole epoch length

Description

The unstake function will revert if the current block time is greater than the epoch end

time. However, this function does not revert if the block time is the same as the epoch

end time. Users that unstake right as the epoch ends will miss out on rewards.

Additionally, these rewards won’t be distributed to other stakers and will be left in the

contract.

Vulnerability Details

The unstake function shown below reverts when the block.timestamp is greater than

the epoch.endTime.

function unstake(address to, uint256 amount) external nonReentrant {

Epoch memory _epoch = epoch[currentEpochId];

if (block.timestamp > _epoch.endTime) revert OutOfEpoch();

As seen in this function, if block.timestamp is equal to the epoch.endTime, the function

will not revert. Users that staked the whole duration of the epoch can unstake just as

Hashlock Pty Ltd

21

the epoch ends, this will result in them losing out on their rewards even though they

have staked the full duration of an epoch. Rewards that these users should have earned

will be stuck in the contract until they are withdrawn by a privileged role.

Proof of Concept

Implement and run the following test in the StakedPDT_claim.t.sol file.

function test_unstakeAtEpochEnd() public {

uint256 POOL_SIZE = 1e18;

uint256 initialBalance = 1e18;

bPDTOFT.mint(staker1, initialBalance);

bPDTOFT.mint(staker2, initialBalance);

/// EPOCH 0

_creditPRIMERewardPool(POOL_SIZE);

_moveToNextEpoch(0);

/// EPOCH 1

// users stake

vm.startPrank(staker1);

bPDTOFT.approve(bStakedPDTAddress, initialBalance);

bStakedPDT.stake(staker1, initialBalance);

vm.stopPrank();

vm.startPrank(staker2);

bPDTOFT.approve(bStakedPDTAddress, initialBalance);

bStakedPDT.stake(staker2, initialBalance);

vm.stopPrank();

// advance time to the end of epoch 1

(, uint256 epochEndTime,) = bStakedPDT.epoch(1);

vm.warp(epochEndTime);

Hashlock Pty Ltd

22

//staker1 unstakes at epoch end

vm.startPrank(staker1);

bStakedPDT.unstake(staker1, initialBalance);

vm.stopPrank();

// move to epoch 2

_creditPRIMERewardPool(POOL_SIZE);

_moveToNextEpoch(1);

// stakers claim rewards

vm.startPrank(staker1);

bStakedPDT.claim(staker1);

vm.stopPrank();

vm.startPrank(staker2);

bStakedPDT.claim(staker2);

vm.stopPrank();

// logs

console.log("Staker1 Reward Tokens:", bPRIME.balanceOf(staker1));

console.log("Staker2 Reward Tokens:", bPRIME.balanceOf(staker2));

console.log("Reward tokens in the contract:",
bPRIME.balanceOf(bStakedPDTAddress));

}

Observing the logs we can see that the staker1 address has not received any rewards

even though they have staked for the full epoch duration. The rewards they have

earned are not distributed to other stakers and they are left in the staking contract.

Staker1 Reward Tokens: 0

Staker2 Reward Tokens: 500000000000000000

Reward tokens in the contract: 1500000000000000000

Hashlock Pty Ltd

23

Impact

Users that have staked for the whole epoch duration can lose out on rewards. These

rewards are not distributed to other users and are left in the staking contract.

Recommendation

Change the if check as shown below in the unstake function.

function unstake(address to, uint256 amount) external nonReentrant {

Epoch memory _epoch = epoch[currentEpochId];

if (block.timestamp >= _epoch.endTime) revert OutOfEpoch();

This change will make sure that the unstaking is not possible when epoch ends.

Update the contract to make sure that the rewards unstaking users should’ve gotten are

distributed among other stakers.

Status

Resolved

[M-03] StakedPDT::updateRewardsExpiryThreshold - Updating reward expiry

threshold applies to epochs that happened before the update

Description

The updateRewardsExpiryThreshold function updates the rewardsExpiryThreshold

variable which changes which epochs are eligible for rewards. Users that do not expect

this change will lose out on rewards when this variable is updated.

Vulnerability Details

The updateRewardsExpiryThreshold function updates the rewardsExpiryThreshold

variable as shown below:

function updateRewardsExpiryThreshold(

uint256 newRewardsExpiryThreshold

) external onlyRole(TOKEN_MANAGER) {

if (newRewardsExpiryThreshold == 0) revert InvalidRewardsExpiryThreshold();

Hashlock Pty Ltd

24

rewardsExpiryThreshold = newRewardsExpiryThreshold;

emit UpdateRewardDuration(newRewardsExpiryThreshold);

}

This function is backwards compatible, meaning that it will affect older epochs. Taking a

look at where the rewardsExpiryThreshold variable is used:

function claim(address to) external nonReentrant {

_setUserWeightAtEpoch(msg.sender);

uint256 _currentEpochId = currentEpochId;

uint256 _claimLeftOff = claimLeftOff[msg.sender];

if (_claimLeftOff == _currentEpochId || _currentEpochId == 1) revert
ClaimedUpToEpoch();

uint256 _rewardsExpiryThreshold = rewardsExpiryThreshold;

uint256 _startActiveEpochId = _currentEpochId > _rewardsExpiryThreshold

? _currentEpochId - _rewardsExpiryThreshold

: 1;

//rest of the function

This variable will make older epochs that are less than the currentEpochId -

rewardsExpiryThreshold ineligible for reward claims. For example: if the currentEpochId

is 25 and rewardsExpiryThreshold is 15, epochs 1-10 will not be claimable.

Having no snapshots of older epochs and what the rewardsExpiryThreshold was when

users staked in these epochs will mean that this variable will apply to epochs before the

update.

Proof of Concept

Implement and run the following test in the StakedPDT_claim.t.sol file.

function test_updateRewardExpiryAfterStake() public {

uint256 POOL_SIZE = 1e18;

uint256 initialBalance = 1e18;

bPDTOFT.mint(staker1, initialBalance * 2);

Hashlock Pty Ltd

25

bPDTOFT.mint(staker2, initialBalance * 2);

bPDTOFT.mint(staker3, initialBalance * 2);

//advance to epoch1

_creditPRIMERewardPool(POOL_SIZE);

_moveToNextEpoch(0);

//staker1 stake at epoch1, reward expiry threshold is 24

vm.startPrank(staker1);

bPDTOFT.approve(bStakedPDTAddress, initialBalance * 2);

bStakedPDT.stake(staker1, initialBalance);

vm.stopPrank();

//as the only staker in this epoch, staker1 should get all the epoch1 rewards.

//advance to epoch2

_creditPRIMERewardPool(POOL_SIZE);

_moveToNextEpoch(1);

//staker2 and staker3 stake at epoch2

vm.startPrank(staker2);

bPDTOFT.approve(bStakedPDTAddress, initialBalance * 2);

bStakedPDT.stake(staker2, initialBalance);

vm.stopPrank();

vm.startPrank(staker3);

bPDTOFT.approve(bStakedPDTAddress, initialBalance * 2);

bStakedPDT.stake(staker3, initialBalance);

vm.stopPrank();

//advance to epoch3

_creditPRIMERewardPool(POOL_SIZE);

_moveToNextEpoch(2);

//tokenManager updates reward expiry threshold to 1

Hashlock Pty Ltd

26

vm.startPrank(tokenManager);

bStakedPDT.updateRewardsExpiryThreshold(1);

vm.stopPrank();

//all stakers claim

vm.startPrank(staker1);

bStakedPDT.claim(staker1);

vm.stopPrank();

vm.startPrank(staker2);

bStakedPDT.claim(staker2);

vm.stopPrank();

vm.startPrank(staker3);

bStakedPDT.claim(staker3);

vm.stopPrank();

//showing that all claimed rewards are equal

uint256 staker1Rewards = bPRIME.balanceOf(staker1);

uint256 staker2Rewards = bPRIME.balanceOf(staker2);

uint256 staker3Rewards = bPRIME.balanceOf(staker3);

assertEq(staker1Rewards, staker2Rewards);

assertEq(staker1Rewards, staker3Rewards);

}

This test will pass, proving that staker1 that staked when the rewardsExpiryThreshold

was 24, lost their rewards for epoch1 when rewardsExpiryThreshold was updated to 1.

Impact

Users that have staked before the rewardsExpiryThreshold change, will lose out on

rewards since they do not expect this change.

Additionally this introduces a centralization risk, malicious or careless tokenManager can

cause the users to lose out on rewards.

Hashlock Pty Ltd

27

Recommendation

Keep track of what the rewardsExpiryThreshold was when that epoch happened, in

order to not make this variable backwards compatible. rewardsExpiryThreshold change

should not apply to epochs that have happened before the change.

Note:

The ParagondsDAO team acknowledges that if, through a successful governance

proposal, their community decides to shorten the rewards expiry threshold, they would

need to provide sufficient lead time and do a large communication push to ensure

stakers with unclaimed rewards from previous epochs claim them before the change is

implemented.

For any stakers who did not claim their rewards before the change was implemented,

the rewards they earned and did not claim beyond the new threshold would be

considered expired.

Status

Acknowledged

Low

[L-01] StakedPDT::withdrawRewardTokens - Centralization risk for privileged

function

Description

The withdrawRewardTokens function allows the privileged tokenManager role to

withdraw any amount of reward tokens from the contract.

/**

* @notice Withdraw idle reward tokens. Idle reward amount

* should be calculated from off-chain side.

* @param rewardToken The address of the reward token

* @param amount The amount of the reward tokens to withdraw

Hashlock Pty Ltd

28

*

* Requirements:

*

* - Only TOKEN_MANAGER can withdraw reward tokens

* - `rewardToken` should be already registered

* - `amount` shouldn't be zero

*

* Emits a {WithdrawRewardToken} event.

*/

function withdrawRewardTokens(

address rewardToken,

uint256 amount

) external onlyRole(TOKEN_MANAGER) {

if (rewardToken == address(0)) {

revert InvalidRewardToken();

}

if (amount == 0) {

revert InvalidWithdrawAmount();

}

address[] memory _tokenList = rewardTokenList;

uint256 _tokenListSize = _tokenList.length;

uint8 isRegistered = 0;

for (uint256 itTokenIndex; itTokenIndex < _tokenListSize;) {

if (_tokenList[itTokenIndex] == rewardToken) {

isRegistered = 1;

break;

}

unchecked {

++itTokenIndex;

}

}

Hashlock Pty Ltd

29

if (isRegistered == 0) {

revert InvalidRewardToken();

}

IERC20(rewardToken).safeTransfer(msg.sender, amount);

emit WithdrawRewardToken(rewardToken, amount);

}

Comments state that the amount that will be withdrawn is calculated off-chain.

However this still introduces a centralization risk.

Off-chain system should never calculate the incorrect amount.

Malicious or careless tokenManager role can withdraw any amount of tokens from the

contract which can result in users losing out on rewards they have earned.

Recommendation

Implement the correct idle reward calculation in the function itself or make sure that the

off-chain calculation will never be incorrect.

Status

Resolved

[L-02] StakedPDT - Users’ tokens will be stuck in the contract if privileged role

does not manually start a new epoch

Description

The unstake function does not allow users to unstake their PDT tokens if epoch has

ended:

function unstake(address to, uint256 amount) external nonReentrant {

Epoch memory _epoch = epoch[currentEpochId];

if (block.timestamp > _epoch.endTime) revert OutOfEpoch();

//rest of the function

Hashlock Pty Ltd

30

This is done to make sure that users do not lose out on their rewards in case they

unstake after an epoch ends and another one starts. However, this means that staked

tokens will be stuck in the contract if the EPOCH_MANAGER role does not call the

distribute function to manually move onto the next epoch.

This is a useability issue and a centralization risk.

Recommendation

Implement a mechanism that keeps track if users have staked till the end of an epoch

and make them eligible for rewards according to this mechanism. This way the function

can be modified to allow users to stake/unstake after an epoch ends and before a new

one starts manually.

Status

Acknowledged

ParagonsDAO Team Comment:

This is working as designed.

We will design a script that begins the new epoch automatically.

[L-03] StakedPDT - Contract implementation does not match the

documentation

Description

The documents given for the StakedPDT.sol state that:

● Rewards can be claimed at the end of each epoch using an epoch_id

However, the claim function does not take any epoch_id parameter from the user,

instead it calculates the rewards for all epochs.

● Up to two different ERC20 tokens can be distributed as rewards in a
single epoch.

More than two different ERC20 tokens can be distributed as rewards in a single epoch.

Hashlock Pty Ltd

31

Recommendation

Update the documentation or the contract as it is intended to avoid mismatch.

Status

Resolved

[L-04] StakedPDT - No token locking mechanism allows users to receive

rewards even if they staked for 1 block

Description

In the staking mechanism, there is no lock for users' staked tokens and users are eligible

for rewards no matter when in epoch they have staked. This will cause users to stake

right before an epoch ends and unstake right after epoch ends, benefiting from

rewards.

Vulnerability Details

The rewards in the StakedPDT.sol contract are sent to the contract at each epoch's

start. Users that stake during an epoch earn rewards based on how long they have

staked in that epoch for.

function stake(address to, uint256 amount) external nonReentrant {

Epoch memory _epoch = epoch[currentEpochId];

if (block.timestamp > _epoch.endTime) {

revert OutOfEpoch();

}

if (amount == 0) {

revert InvalidStakeAmount();

}

_setUserWeightAtEpoch(to);

_adjustContractWeight();

Hashlock Pty Ltd

32

StakeDetails memory _stake = stakeDetails[to];

uint256 _amountStaked = balanceOf(to);

if (_stake.lastInteraction > _epoch.startTime) {

uint256 _additionalWeight = _weightIncreaseSinceInteraction(

block.timestamp,

_stake.lastInteraction,

_amountStaked

);

_stake.weightAtLastInteraction += _additionalWeight;

} else {

_stake.weightAtLastInteraction = _weightIncreaseSinceInteraction(

block.timestamp,

_epoch.startTime,

_amountStaked

);

}

_stake.lastInteraction = block.timestamp;

stakeDetails[to] = _stake;

_mint(to, amount);

IERC20(pdt).safeTransferFrom(msg.sender, address(this), amount);

emit Stake(to, amount, currentEpochId);

}

Taking a look at the unstake function:

function unstake(address to, uint256 amount) external nonReentrant {

Epoch memory _epoch = epoch[currentEpochId];

if (block.timestamp > _epoch.endTime) revert OutOfEpoch();

uint256 _amountStaked = balanceOf(msg.sender);

if (amount == 0 || amount > _amountStaked) revert InvalidUnstakeAmount();

Hashlock Pty Ltd

33

_setUserWeightAtEpoch(msg.sender);

_adjustContractWeight();

StakeDetails memory _stake = stakeDetails[msg.sender];

if (_stake.lastInteraction > _epoch.startTime) {

uint256 _additionalWeight = _weightIncreaseSinceInteraction(

block.timestamp,

_stake.lastInteraction,

_amountStaked

);

_stake.weightAtLastInteraction += _additionalWeight;

} else {

_stake.weightAtLastInteraction = _weightIncreaseSinceInteraction(

block.timestamp,

_epoch.startTime,

_amountStaked

);

}

_stake.lastInteraction = block.timestamp;

stakeDetails[msg.sender] = _stake;

_burn(msg.sender, amount);

IERC20(pdt).safeTransfer(to, amount);

emit Unstake(msg.sender, amount, currentEpochId);

}

We can observe that users can unstake their tokens at any point within an epoch. This

allows users to stake right before an epoch ends, unstake right after the epoch ends

and claim rewards.

Proof of Concept

Hashlock Pty Ltd

34

Implement and run the following test in the StakedPDT_claim.t.sol file.

function test_StepwiseJumpOfRewards() public {

uint256 POOL_SIZE = 1e18;

uint256 initialBalance = 1e18;

bPDTOFT.mint(staker1, initialBalance * 100);

bPDTOFT.mint(staker2, initialBalance * 2);

bPDTOFT.mint(staker3, initialBalance * 2);

bPDTOFT.mint(staker4, initialBalance * 2);

/// EPOCH 0

_creditPRIMERewardPool(POOL_SIZE);

_moveToNextEpoch(0);

/// EPOCH 1

_creditPRIMERewardPool(POOL_SIZE);

_moveToNextEpoch(1);

//EPOCH 2

//staker2, 3 and 4 stake in start of epoch2

(uint256 epochStartTime2, uint256 epochEndTime2,) = bStakedPDT.epoch(2);

vm.warp(epochStartTime2);

vm.startPrank(staker2);

bPDTOFT.approve(bStakedPDTAddress, initialBalance * 2);

bStakedPDT.stake(staker2, initialBalance);

vm.stopPrank();

vm.startPrank(staker3);

bPDTOFT.approve(bStakedPDTAddress, initialBalance * 2);

bStakedPDT.stake(staker3, initialBalance);

vm.stopPrank();

Hashlock Pty Ltd

35

vm.startPrank(staker4);

bPDTOFT.approve(bStakedPDTAddress, initialBalance * 2);

bStakedPDT.stake(staker4, initialBalance);

vm.stopPrank();

//staker1(whale) stakes right before epoch2 ends

uint256 staker1BalanceBefore = bPDTOFT.balanceOf(staker1);

vm.warp(epochEndTime2 - 1);

vm.startPrank(staker1);

bPDTOFT.approve(bStakedPDTAddress, initialBalance * 100);

bStakedPDT.stake(staker1, initialBalance * 100);

vm.stopPrank();

//move to epoch3

_creditPRIMERewardPool(POOL_SIZE);

_moveToNextEpoch(2);

// EPOCH 3

vm.startPrank(staker1);

bStakedPDT.unstake(staker1, initialBalance * 100);

vm.stopPrank();

uint256 staker1BalanceAfter = bPDTOFT.balanceOf(staker1);

vm.startPrank(staker1);

bStakedPDT.claim(staker1);

vm.stopPrank();

vm.startPrank(staker2);

bStakedPDT.claim(staker2);

vm.stopPrank();

vm.startPrank(staker3);

Hashlock Pty Ltd

36

bStakedPDT.claim(staker3);

vm.stopPrank();

vm.startPrank(staker4);

bStakedPDT.claim(staker4);

vm.stopPrank();

assertEq(staker1BalanceBefore, staker1BalanceAfter);

assertGt(bPRIME.balanceOf(staker1), 0);

console.log("Staker1 PRIME Reward Tokens:", bPRIME.balanceOf(staker1));

console.log("Staker2 PRIME Reward Tokens:", bPRIME.balanceOf(staker2));

console.log("Staker3 PRIME Reward Tokens:", bPRIME.balanceOf(staker3));

console.log("Staker3 PRIME Reward Tokens:", bPRIME.balanceOf(staker4));

}

Observing the logs, staker1 has staked for only 1 block and received rewards while

diluting the reward pool for other users.

Staker1 PRIME Reward Tokens: 13778469763148

Staker2 PRIME Reward Tokens: 333328740510078950

Staker3 PRIME Reward Tokens: 333328740510078950

Staker3 PRIME Reward Tokens: 333328740510078950

Impact

Users that have staked for only 1 block can benefit from rewards, diluting the reward

pool for honest stakers.

Recommendation

Do not let users stake at the end of epochs, for example if there’s 3 days left for an

epoch end, revert stake calls.

Alternatively, introduce a token locking mechanism that does not allow unstaking before

a certain time has passed since staking.

Hashlock Pty Ltd

37

Status

Acknowledged

ParagonsDAO Team Comment:

This is working as designed.

A staker cannot earn more than they are eligible for in an epoch. This is controlled by a

daily multiplier.

Gas

[G-01] StakedPDT::unstake - Unnecessary revert can be avoided

Description

The highlighted part in the function shown below causes the function to revert if the

amount entered by the user is greater than their balance.

function unstake(address to, uint256 amount) external nonReentrant {

//rest of the function

uint256 _amountStaked = balanceOf(msg.sender);

if (amount == 0 || amount > _amountStaked) revert InvalidUnstakeAmount();

//rest of the function

This can be modified in order for the function to not revert.

Recommendation

Update the function as shown below so that the amount will be set to users balance if

inputted amount is too big:

function unstake(address to, uint256 amount) external nonReentrant {

//rest of the function

uint256 _amountStaked = balanceOf(msg.sender);

Hashlock Pty Ltd

38

if (amount == 0) revert InvalidUnstakeAmount();

if (amount > _amountStaked){

amount = _amountStaked; }

//rest of the function

Status

Acknowledged

Paragons DAO Team Comment:

Controls for “max” withdrawal will be implemented on front-end.

[G-02] StakedPDT - Prevent setting a state variable with the same value

Description

Not only is wasteful in terms of gas, but this is especially problematic when an event is

emitted and the old and new values set are the same, as listeners might not expect this

kind of scenario. Functions shown below can be updated to revert if the updated value

is the same as the existing value.

function updateEpochLength()

function updateRewardsExpiryThreshold()

function updateWhitelistedContract()

Recommendation

Implement checks in these functions to avoid setting state variables to their existing

values. Prior to updating a state variable, compare the new value with the current value

and proceed with the assignment only if they differ. Additionally, ensure that events

related to state variable updates are emitted only when actual changes occur. This

approach not only saves gas but also prevents confusion and unnecessary triggers in

event listeners.

Hashlock Pty Ltd

39

Status

Resolved

[G-03] IForkedPDTStakingV2 - Event declared but not emitted

Description

An event within the contract is declared but not utilised in any of the contract's

functions or operations. Having unused event declarations can consume unnecessary

space and may lead to misunderstandings for developers or users expecting this event

as part of the contract's functionality.

event PushBackEpoch0()

event UpsertRewardToken()

event TransferStakes()

Recommendation

Consider removing the unused event declaration to optimise the contract and enhance

clarity. If there is an intent for this event to be part of certain operations, ensure it is

emitted appropriately. Otherwise, for the sake of clean and efficient code, it is advisable

to remove any unused declarations.

Status

Resolved

[G-04] StakedPDT - State variables that are used multiple times in a function

should be cached

Description

When performing multiple operations on a state variable in a function, it is

recommended to cache it first. Multiple reads to a state variable can save gas by

caching it.

function updateEpochLength() //State variable `currentEpochId` is used multiple times

Hashlock Pty Ltd

40

function stake() //State variable `currentEpochId` is used multiple times

function unstake() //State variable `currentEpochId` is used multiple times

Recommendation

Cache state variables in stack or local memory variables within functions when they are

used multiple times.

Status

Resolved

[G-05] StakedPDT - Automated unchecked arithmetic is generated after solidity

version 0.8.22

Description

It is not needed to add the unchecked block to for loop expressions after Solidity version

0.8.22.

According to Solidity documentation: Solidity 0.8.22 introduces an overflow check

optimization that automatically generates an unchecked arithmetic increment of the

counter of for loops. This new optimization removes the need for poor unchecked

increment patterns in for loop bodies

Recommendation

Do not use the unchecked keyword for loop expressions after Solidity version 0.8.22.

Status

Resolved

Hashlock Pty Ltd

https://soliditylang.org/blog/2023/10/25/solidity-0.8.22-release-announcement/

41

Centralisation

The ParagonsDAO project values security and utility over decentralisation.

The owner executable functions within the protocol increase security and functionality

but depend highly on internal team responsibility.

Hashlock Pty Ltd

42

Conclusion

After Hashlocks analysis, the ParagonsDAO project seems to have a sound and

well-tested code base, now that our vulnerability findings have been resolved and

acknowledged. Overall, most of the code is correctly ordered and follows industry best

practices. The code is well commented on as well. To the best of our ability, Hashlock is

not able to identify any further vulnerabilities.

Hashlock Pty Ltd

43

Our Methodology

Hashlock strives to maintain a transparent working process and to make our audits a

collaborative effort. The objective of our security audits is to improve the quality of

systems and upcoming projects we review and to aim for sufficient remediation to help

protect users and project leaders. Below is the methodology we use in our security audit

process.

Manual Code Review:

In manually analysing all of the code, we seek to find any potential issues with code

logic, error handling, protocol and header parsing, cryptographic errors, and random

number generators. We also watch for areas where more defensive programming could

reduce the risk of future mistakes and speed up future audits. Although our primary

focus is on the in-scope code, we examine dependency code and behavior when it is

relevant to a particular line of investigation.

Vulnerability Analysis:

Our methodologies include manual code analysis, user interface interaction, and white

box penetration testing. We consider the project's website, specifications, and

whitepaper (if available) to attain a high-level understanding of what functionality the

smart contract under review contains. We then communicate with the developers and

founders to gain insight into their vision for the project. We install and deploy the

relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Hashlock Pty Ltd

44

Documenting Results:

We undergo a robust, transparent process for analysing potential security vulnerabilities

and seeing them through to successful remediation. When a potential issue is

discovered, we immediately create an issue entry for it in this document, even though

we still need to verify the feasibility and impact of the issue. This process is vast

because we document our suspicions early even if they are later shown not to represent

exploitable vulnerabilities. We generally follow a process of first documenting the

suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative,

and we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this, we analyse the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take and finally, we

suggest the requirements for remediation engineering for future releases. The

mitigation and remediation recommendations should be scrutinised by the developers

and deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the contract details are

made public.

Hashlock Pty Ltd

45

Disclaimers

Hashlock’s Disclaimer

Hashlock’s team has analysed these smart contracts in accordance with the best

industry practices at the date of this report, in relation to: cybersecurity vulnerabilities

and issues in the smart contract source code, the details of which are disclosed in this

report, (Source Code); the Source Code compilation, deployment, and functionality

(performing the intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no

statements or warranties on the security of the code. It also cannot be considered a

sufficient assessment regarding the utility and safety of the code, bug-free status, or

any other statements of the contract. While we have done our best in conducting the

analysis and producing this report, it is important to note that you should not rely on

this report only. We also suggest conducting a bug bounty program to confirm the high

level of security of this smart contract.

Hashlock is not responsible for the safety of any funds and is not in any way liable for

the security of the project.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its

programming language, and other software related to the smart contract can have their

own vulnerabilities that can lead to attacks. Thus, the audit can’t guarantee the explicit

security of the audited smart contracts.

Hashlock Pty Ltd

46

About Hashlock

Hashlock is an Australian-based company aiming to help facilitate the successful

widespread adoption of distributed ledger technology. Our key services all have a focus

on security, as well as projects that focus on streamlined adoption in the business

sector.

Hashlock is excited to continue to grow its partnerships with developers and other

web3-oriented companies to collaborate on secure innovation, helping businesses and

decentralised entities alike.

Website: hashlock.com.au

Contact: info@hashlock.com.au

Hashlock Pty Ltd

http://hashlock.com.au
mailto:info@hashlock.com.au

47

Hashlock Pty Ltd

